

3GPP 5G STANDARDIZATION

Jörg Huschke Ericsson Research

OUTLOOK

> Why?

- 3GPP & ITU
- New spectrum
- New (and old) use cases

> When?

- Non-standalone NR
- Standalone NR

> What?

- Support for low and high carrier frequencies
- High performance
 - > w.r.t. data rate, latency, capacity, and energy consumption
- Flexible and future proof

WIRELESS ACCESS GENERATIONS **5G 4G** 3G **2G** *5G* hsp GSM ~2020 ~1990 ~2000 ~2010

> 3rd Generation Partnership Project (3GPP) formed by regional standards organizations

 USA, Europe, China, Korea, Japan, India
 > 630 Individual company members (Feb. 2019)

 > 3GPP provides an environment to produce Reports and Specifications

 GSM/GPRS, WCDMA/HS, LTE, ...5G

...basically 3GPP creates a <u>global eco system</u>!

INTERNATIONAL TELECOMMUNICATION UNION

> United Nations specialized agency for information and communication technologies

- Sub-group ITU-R allocates global radio spectrum
 - > World Radio Conferences (WRC) every ~4 years
- Access to IMT (International Mobile Telecommunications) spectrum for 'certified technologies':
 - > IMT-2000 \rightarrow UMTS/HSPA, CDMA2000, EDGE
 - > IMT-Advanced \rightarrow LTE, WiMAX
 - > IMT-2020 \rightarrow NR, LTE*

5G SPECTRUM RANGE

5G USE CASES

ITU AND 3GPP REQUIREMENTS

Performance Measure	Requirement
Peak data rate	DL: 20 Gbps
	UL: 10 Gbps
Peak spectral efficiency	DL: 30 bps/Hz
	UL: 15 bps/Hz
Bandwidth	100MHz
Control plane latency	20ms (10ms encouraged)
User plane latency, 1-way	URLLC: 0.5ms, eMBB: 4ms
Infrequent small packets	10s / 20byte packet
Mobility interruption time	0 ms
Mobility	Up to 500 km/h
TRP spectral efficiency	3x IMT-A requirement
User spectral efficiency at 5% percentile	3x IMT-A requirement
Area traffic capacity	10Mbps/m ² [ITU]
User experienced datarate	100/50 Mbps DL/UL [ITU]
MBB coverage (3GPP)	140/143 dB loss MaxCL

Performance Measure	Requirement
Connection density	1,000,000 devices/km ²
mMTC coverage (3GPP)	164dB coupling loss
Battery life (3GPP)	10-15 years
Reliability	1-10 ⁻⁵ in 1ms
NW energy efficiency	Inspection (Qualitative)
UE Energy efficiency	Inspection (Qualitative)
Inter-system mobility	Yes
Bandwidth scalability	Yes
Spectrum flexibility	Yes
Support of wide range of services	Yes

OUTLOOK

> Why?

- 3GPP & ITU
- New spectrum
- New (and old) use cases

> When?

- Non-standalone NR
- Standalone NR

> What?

- Support for low and high carrier frequencies
- High performance
 - > w.r.t. data rate, latency, capacity, and energy consumption
- Flexible and future proof

3GPP 5G TIMEPLAN

ACCELERATED 5G ARCHITECTURE

Non-standalone NR with LTE master connected to Evolved Packet Core (EPC)
 Based on LTE's Dual Connectivity framework designed for 'non-ideal' backhaul

> Standards approved in Dec. 2017

5G ARCHITECTURE OPTIONS

|

> Standalone NR connected to 5G Core Network (5GC)

- Incl. NR-NR Carrier Aggregation and NR supplemental UL
- > Standards approved in Jun. 2018

OUTLOOK

> Why?

- 3GPP & ITU
- New spectrum
- New (and old) use cases

> When?

- Non-standalone NR
- Standalone NR

> What?

- Support for low and high carrier frequencies
- High performance
 - > w.r.t. data rate, latency, capacity, and energy consumption
- Flexible and future proof

FLEXIBLE NUMEROLOGY

|

> 6GHz

> OFDM with flexible sub-carrier spacing: 2ⁿ·15 kHz

Sub-carrier spacing	Resource block bandwidth	Slot length	Cyclic-prefix length	S
15 kHz	180 kHz	1 ms	4.69 μs	
30 kHz	360 kHz	0.5 ms	2.34 μs	GH GH
60 kHz	720 kHz	0.25 ms	1.17 μs / 4.16 μs	
120 kHz	1.44 MHz	125 μs	0.59 μs	
240 kHz	2.88 MHz	62.5 μs	0.29 μs	

EFFICIENT / EFFECTIVE SPECTRUM USAGE

- > Up to 400 MHz carrier bandwidth (LTE: 20MHz)
- >~95% spectrum utilization (LTE: 90%)
- > Up to 16 carriers can be aggregated
- > Devices may not support the full carrier bandwidth
- > Possible co-channel sharing of UL and DL with LTE

Sub-carrier spacing	Maximum bandwidth
15 kHz	~50 MHz
30 kHz	~100 MHz
60 kHz	~200 MHz
120 kHz	~400 MHz
240 kHz	~400 MHz

SCHEDULING

- Slot-based scheduling (like LTE)
- > Multi-slot scheduling possible
- 'Dynamic' TDD
- > Flexible (asynchronous) HARQ timing

> "Mini-slot" transmission

- Transmission can start at any symbol and can have an almost arbitrary length
- Enabling
 - Iow latency, feedback in same slot
 - > Reasonable payload size
 - > Quick access in unlicensed spectrum

LEAN DESIGN

- > Minimize network transmissions not directly related to user-data delivery
 - Energy efficient networks
 - Low overhead
 - Interference minimization
 - Co-channel sharing, e.g. LTE and NR
 - Future-proof

- On-demand reference signals
- Sparser broadcast of minimum system information
- No mandatory full-BW transmissions
- Flexible timing
- ...

MIMO NATIVE

> Design principles:

- Beamforming design for all transmissions (data, UE-specific- and common control)
- For BS and UE beamforming
- For digital- and analogue beamforming

> Common control signals

- "SS blocks" containing synchronization signal and minimum system information
- 20ms default (Idle UE) periodicity (LTE: 5ms)
- Beam sweeping of SS blocks (up to 64)

MIMO NATIVE

> DL Data Channel

- LTE-like data channel using UE-specific reference signals
 - > Up to 256QAM modulation
 - > Up to 8 single-user MIMO layers (12 for multi-user MIMO)
 - Codebook-based and reciprocity based feedback
- Simultaneous reception of two data channels to support cooperative base stations
- "self-contained transmissions" incl. (control), reference signals and data
 - > Front loaded reference signals possible → fast decoding

> UL Data Channel

- Up to 256QAM modulation
- Up to 4 single-user MIMO layers (12 for multi-user MIMO)
- Codebook-based and reciprocity based feedback
- "self-contained transmissions"

BASE STATION INTERNAL INTERFACES

Central Unit (CU) – Distributed Unit (DU)

- Realized by F1 interface
- CU mainly contains PDCP protocol
- DU mainly contains RLC/MAC/PHY

Control Plane (CP) – User Plane (UP)

- Realized by E1 interface

> Expectations:

- Cost reduction through virtualization/cloudification
- Flexible deployment
- Separate scaling of nodes

5G NR

- Designed for new spectrum and use cases
 - eMBB, mMTC, cMTC, FWA ...and future use
- Comes in 2 flavors
 - Non-standalone standardized Dec. 2017
 - Standalone standardized June 2018
- Superior air interface
 - Support for low and high carrier frequencies
 - High performance w.r.t data rate, capacity, latency, energy consumption
 - Flexible and future proof

FUTURE NR OUTLOOK

- NR on unlicensed spectrum
- Positioning
- Relaying

. . .

- Direct Vehicle-2-Vehicle communication
- NR for satellites

ERICSSON